Multi-dimensional knowledge representation with a fuzzy extension

نویسنده

  • Debasis Mitra
چکیده

This paper presents some prefiminary results of our current attempts to develop a hybrid multi-dimensional knowledge representation scheme which can handle both the incompleteness and uncertainty. We have started from the quantitative temporal constraint information, and extended it with possibilistic quantifiers. We have also extended the former towards a multidimensional constraint-based formalism. Finally we have combined these two extensions under a multi-dimensional possibilistic scheme. The context of spatio-temporal reasoning is one of the motivations for developing such a hybrid scheme. However, the major motivation for our work is coming from the muti-dimensional data modeling research[SHJM96] within the database area. Identifying notions: Quantitative temporal constraint propagation, Fuzzy constraint propagation, Spatio-temporal knowledge representation, Multi-dimensional data modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space

Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...

متن کامل

A Knowledge Representation Formalism to Process Vague Medical Queries

Many fields of application deal with vague and fuzzy information. Thus the need of tools that are able to handle this kind of data is obvious. We concentrate on the extension of well-known terminological knowledge representation systems with appropriate methods. Classical terminological knowledge representation systems are based on two-valued logics. To solve problems of uncertainty a more expr...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

Application of Multi-dimensional Fuzzy Analysis to Decision Making

The goal of multi-dimensional fuzzy analysis consists in discovering different properties in multi-dimensional fuzzy distributions represented either extensionally (database) or intensionally (knowledge base). In this paper we show how this approach can be applied to such problems as decision making and knowledge discovery in databases. For uniform and efficient representation of fuzzy knowledg...

متن کامل

INTUITIONISTIC FUZZY DIMENSIONAL ANALYSIS FOR MULTI-CRITERIA DECISION MAKING

Dimensional analysis, for multi-criteria decision making, is a mathematical method that includes diverse heterogeneous criteria into a single dimensionless index. Dimensional Analysis, in its current definition, presents the drawback to manipulate fuzzy information commonly presented in a multi-criteria decision making problem. To overcome such limitation, we propose two dimensional analysis ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002